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Fig. 1. We present a microscopic facial details synthesis framework (FLEX) from a single unconstrained image. We illustrate our results on the left, including
(a) input image, (b) recovered facial texture, (c) macroscopic displacement map, and (d) microstructure displacement map synthesized by our method. The
rendered results are shown on the right. Our method can obtain microscopic details, including wrinkles and pores, thereby enhancing the realism of rendering.

Obtaining 3D faces with microscopic structures from a single unconstrained
image is challenging. The complexities of wrinkles and pores at amicroscopic
level, coupled with the blurriness of the input image, raise the difficulty.
However, the distribution of wrinkles and pores tends to follow a specialized
pattern, which can provide a strong prior for synthesizing them. Therefore, a
key tomicrostructure synthesis is a parametric wrinkles and pore model with
controllable semantic parameters. Additionally, ensuring differentiability
is essential for enabling optimization through gradient descent methods.
To this end, we propose a novel framework designed to reconstruct facial
micro-wrinkles and pores from naturally captured images efficiently. At the
core of our framework is a differentiable representation of wrinkles and
pores via a graph neural network (GNN), which can simulate the complex
interactions between adjacent wrinkles by multiple graph convolutions.
Furthermore, to overcome the problem of inconsistency between the blurry
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input and clear wrinkles during optimization, we proposed a Direction
Distribution Similarity that ensures that the wrinkle-directional features
remain consistent. Consequently, our framework can synthesize facial micro-
structures from a blurry skin image patch, which is cropped from a natural-
captured facial image, in around an average of 2 seconds. Our framework can
seamlessly integrate with existing macroscopic facial detail reconstruction
methods to enhance their detailed appearance. We showcase this capability
on several works, including DECA, HRN, and FaceScape.
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1 INTRODUCTION
Creating a 3D human face with rich details is essential for many
applications in the modern digital era, including video games, vir-
tual reality, and digital representations of humans. While existing
methods have demonstrated impressive capabilities in reconstruct-
ing macroscale or even mesoscale structures from a single image,
they often struggle to extend to microstructures, such as wrinkles
and pores, which are crucial for achieving realism in human faces.
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This is particularly challenging when the single image is captured
under natural conditions, as it may only show a blurry structure of
the wrinkles and pores.
Extensive efforts have been made to recover high-quality facial

geometry from professionally captured images, with either active
lighting condition [Kampouris et al. 2018; Ma et al. 2007; Riviere
et al. 2020], or passive lighting condition [Beeler et al. 2011; Gotardo
et al. 2018]. While these methods successfully reconstruct facial
geometries with microscopic details, they often depend on costly
and specialized capture setups. On the other hand, following the
seminal work of Blanz and Vetter [1999], many studies have focused
on reconstructing facial geometries from a single unconstrained
image, showing powerful capability at the macro scale [Feng et al.
2021; Lei et al. 2023] and the meso scale [Yamaguchi et al. 2018; Yang
et al. 2020], yet they are not designed to handle the microscopic
structures. One exception is the work by Weiss et al. [2023], which
introduced a parametric facial microstructure model, successfully
recovering microscopic structures from a close-up captured partial
face image with apparent wrinkles and pores.

In this paper, we aim to synthesize realistic facial microstructure
from a single unconstrained image. To achieve this, we introduce a
novel framework called FLEX (Fine-Level facial detail EXtraction),
which efficiently obtains the facial microscopic structures from a
single image captured under unconstrained conditions. At the core
of our framework is the differentiable simulation of the microstruc-
ture. Inspired by Weiss et al. [2023], the connection of wrinkles and
pores follows a special pattern, which can be represented through a
graph. Built upon this observation, we propose a novel parametric
microstructure model via the graph neural network (GNN) con-
trolled by semantic parameters. In our model, the structure among
wrinkles can be modeled by the GNN, and the complex interactions
between adjacent wrinkles are simulated through multiple graph
convolutions. By leveraging the parametric microstructure model as
a prior, the parameters of microstructure could be optimized, as long
as the difference between the simulated image with clear microstruc-
tures and the blurry input image can be measured. To this end, we
propose a novel objective function, Direction Distribution Similar-
ity, which focuses on the consistency of the wrinkle’s directional
features. Consequently, our method can extract facial microstruc-
ture from a blurry skin patch in around 2 seconds. Experimental
results show that our synthesized microstructure significantly en-
hances realism when combined with existing macroscopic facial
detail recovery methods.
In summary, our main contributions are:

• A framework to synthesize realistic microstructure of wrin-
kles and tiny pores, from a single unconstrained facial image.

• A differentiable neural wrinkle simulation that is capable of
synthesizing microstructures from semantic parameters by
leveraging the graph neural network.

• A novel objective function, Direction Distribution Similarity,
to bridge the gap between blurry and clear skin patches by
focusing on directional features of wrinkles.

2 RELATED WORK

2.1 Facial Detail Recovery
High-Fidelity Geometry Capture. Capturing 3D detailed facial ge-

ometry has been a significant topic in computer graphics for decades.
Early approaches primarily utilized active capture systems. Weyrich
et al. [2006] corrected coarse facial geometry details by leverag-
ing methods proposed by Nehab et al. [2005]. Ma et al. [2007] em-
ployed a polarized gradient-based illumination system to recover
high-quality surface normals of human faces. Subsequent works
[Fyffe et al. 2016; Kampouris et al. 2018; Riviere et al. 2020] aimed
to accelerate capture time, simplify lighting setups, and reconstruct
high-quality facial geometry along with reflectance materials. Gra-
ham et al. [2012] proposed a method for recovering microscopic
details through an example-based synthesis approach [Hertzmann
et al. 2001], yet it still relies on high-quality displacement maps and
several specially scanned facial patches as inputs.
In contrast, another line of work focuses on reconstructed 3D

facial geometry under passive lighting conditions. Beeler et al. [2010]
proposed a passive stereo system capable of capturing high-quality
3D facial geometry with pore-level details under standard lighting
conditions. Their subsequent study [Beeler et al. 2011] improved
temporal consistency for dynamic facial performance capture. The
following works [Gotardo et al. 2018; Lattas et al. 2022] shorten the
capture time and leverage affordable equipment. Cooperating with
deep learning, some works [Huynh et al. 2018; Li et al. 2021; Liu
et al. 2022; Xiao et al. 2022] also utilize complicated deep neural
networks to infer facial details from captured images. However,
these approaches often rely on images from complex and structured
capture setups.

Recovery from Unconstrained Images. To address the challenge
of recovering facial details from unconstrained environments, in-
cluding in-the-wild scenarios, many studies have extended the basic
work of 3DMM [Blanz and Vetter 1999; Gerig et al. 2017; Jiang et al.
2021; Li et al. 2017]. Some methods [Chai et al. 2023; Chen et al.
2019; Lattas et al. 2023; Saito et al. 2016; Yamaguchi et al. 2018;
Zhu et al. 2023] leverage image-to-image inference from textures
extracted from monocular images. Others [Dib et al. 2023; Tewari
et al. 2018] employ differentiable rendering techniques to recover
facial details, while some works [Chai et al. 2023; Feng et al. 2021]
enable networks to learn dynamic facial wrinkle reconstruction in
a self-supervised manner. While these approaches achieve realistic
appearance modeling at macroscopic or even mesoscopic levels,
their designs, which focus on the entire face region, struggle to
capture finer details such as micro-wrinkles and tiny pores.

2.2 Wrinkle Simulation
Microscopic wrinkle simulation methods have been empirical in
the past, often providing a plausible appearance but not being re-
alistic enough. Wu et al. [1996] proposed a method for simulating
static and dynamic wrinkles by combining biomechanical modeling
and bump mapping, which effectively balanced visual realism and
computational efficiency. Building on such foundations, Bando et al.
[2002] introduced a simpler method using intuitive parameters to
model fine- and large-scale wrinkles based on Bézier curves. To

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



Facial Microscopic Structures Synthesis from a Single Unconstrained Image • 3

Table 1. A brief preview of themain parameters and their description defined
by Weiss et al. [2023]. Here we only display the parameters that directly
influence pores (top) and wrinkles (bottom).

Parameter Description

𝜙 The average of pore distance
𝛽 The blending strength from wrinkles to pores

𝜃 The main direction of wrinkles
𝜇 The degree of wrinkles’ orientation uniformity
𝛿 The degree of influence of wrinkle length
𝜎 The degree of contiguity of wrinkle
𝛾 The tolerance of wrinkle crossing
𝜏 The tolerance of similar wrinkle
𝜌 The deposit of wrinkle depth during iteration

make the static microstructure compatible with dynamic expres-
sion, Nagano et al. [2015] proposed to use convolution to simulate
the deformation of the microstructure when the facial surface is
stretching or shrinking.

Recently, Weiss et al. [2023] proposed a novel graph-based wrin-
kle simulation method, in which they consider the micro-wrinkles
and pores as the edges and nodes in the graph, respectively. Their
graph-based assumption is consistent with the natural relationship
between pores and wrinkles, resulting in realistic simulation results.
Furthermore, to help the artists model the microstructures, they
also leveraged Particle Swarm Optimization (PSO) [Kennedy and
Eberhart 2002] to obtain sets of parameters from clearly captured
skin displacement patches. However, due to the non-differentiable
simulation, their optimization is time-consuming. Their following
work [Weiss et al. 2024] trained a StyleGAN [Karras et al. 2019] to
generate micro-wrinkle patches. While the GAN-based synthesis
yields impressive results due to the adversarial training mechanism,
it is a data-driven method, which highly depends on training data
and its resolution. In contrast, in our Neural Wrinkle Simulation,
the simple GNN learns the complex interactions among wrinkles
from a limited dataset, enabling us to synthesize microstructures
with arbitrary density and number of layers.

3 PRELIMINARY
The graph-based parametric facial microstructure model was first
introduced byWeiss et al. [2023]. Their model takes several semantic
parameters as input and then simulates the facial micro-wrinkles
and pores, which will be represented as a displacement map. We
show the main semantic parameters that control the appearance
of wrinkles and pores in Table 1. This graph-based microstructure
model assumes that the wrinkles and pores correspond to the edges
and nodes on the graph structure, respectively. In this graph, each
wrinkle and pore is assigned a depth value. As wrinkles and pores
are connected to each other, the depth change of one wrinkle will
influence its adjacent wrinkles, and the depth updating is operated
iteratively.

Starting from an empty graph with an initialized wrinkle depth of
zero, each wrinkle will update its depth value in each iteration step
with a probability. More precisely, for a wrinkle𝑤𝑖 , at the 𝑘𝑡ℎ step

of iteration, the probability 𝑝 (𝑘 )
𝑖

to increase its depth is determined
by a function 𝑓 :

𝑝
(𝑘 )
𝑖

= 𝑓 (𝜃, 𝜇, 𝛿, 𝜎,𝛾, 𝜏 ;𝑤𝑖
𝜃
,𝑤𝑖

𝑙
,𝑊 (𝑘 ) ,𝐺 (𝜙)), (1)

where 𝐺 (𝜙) is the graph structure created from the pore distance
𝜙 , 𝑤𝑖

𝜃
is the wrinkle’s direction, 𝑤𝑖

𝑙
is its length, and𝑊 (𝑘 ) is the

situation of other surroundingwrinkles. According to the probability
𝑝
(𝑘 )
𝑖

, the wrinkle’s depth is iteratively updated from 𝑑
(𝑘 )
𝑖

to 𝑑 (𝑘+1)
𝑖

:

𝑑
(𝑘+1)
𝑖

= 𝑑
(𝑘 )
𝑖

+ Δ𝑡 (1 − 𝑑
(𝑘 )
𝑖

)𝜌, (2)

in which the Δ𝑡 = 0.03 is a fixed global time stride. The depth 𝑞 of a
pore can be calculated based on the depth of wrinkles connected to
it:

𝑞 = max(𝑑𝑚𝑎𝑥 , 𝑑𝑚𝑎𝑥 + 𝛽 (𝑑𝑠𝑢𝑚 − 𝑑𝑚𝑎𝑥 )), (3)
where 𝑑𝑠𝑢𝑚 is the sum depth of neighbouring wrinkles and 𝑑𝑚𝑎𝑥 is
the max depth among them.

In the model ofWeiss et al. [2023], the parameters only participate
in calculating the probability of the iteration instead of the final
wrinkle depth itself, leading to the non-differentiability between the
wrinkle depth and the parameters. Instead, we propose our graph-
based parametric model to present microstructures in a neural way
and give a differentiable solution to optimize them.

4 OUR METHOD

4.1 Overview
Given a single unconstrained facial image, our method aims at
synthesizing the facial microstructures of micro-wrinkles and tiny
pores from it. Unconstrained images refer to images captured under
unconstrained photographic environments, where unconstrained
environments denote conditions where lighting, camera setup, and
hardware equipment are uncontrolled or unknown. We represent
the microstructures by a differentiable parametric model, with sev-
eral semantic parameters of wrinkles and pores. We treat our main
microstructure recovery problem as an optimization problem. For
the target facial microstructureW′, it aims to obtain the microstruc-
ture parameters by optimizing:

argmin
𝑥

L(W(𝑥),W′), (4)

where W is our parametric microstructure model and L is our ob-
jective function. We define 𝑥 = (𝜙, 𝛽, 𝜃, 𝜇, 𝛿, 𝜎, 𝜏, 𝜌) as our semantic
parameter, in which 𝜙 and 𝛽 are parameters of the pore, and the
others are the parameters of the wrinkle. The description of each
component can be found in Table 1.
We first present the pipeline of our framework, FLEX (Sec. 4.2),

which takes an unconstrained facial image as input and synthesizes
the microstructure of the whole face. Then we present the core of
our framework, which is the differentiable parametric microstruc-
ture modelW (Sec. 4.3), namely Neural Wrinkle Simulation. Finally,
we show our proposed objective function (Sec. 4.4), Direction Dis-
tribution Similarity, to enable a reasonable optimization.

4.2 FLEX
FLEX is a framework focused on extracting the entire facial mi-
crostructure from a single unconstrained facial image, as shown
in Figure 2. We first use current macroscopic facial detail recovery
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Fig. 2. An overview of the entire pipeline of FLEX. FLEX first extracts geometry, macroscopic details, and texture maps from the facial image. Then, a set of
facial patches is sampled from the face, and each patch is passed to the parameter optimization module to obtain its parameters of wrinkles and pores. Finally,
the optimized parameter set of all patches is used to synthesize the facial microstructure for the entire face.

methods to recover macro details for the whole face, then parame-
ters are recovered from a skin patch to present its microstructures.
Finally, the parameters of all patches are combined into a set to
synthesize the microstructure displacement map of the entire face.

Macroscopic Detail Recovery. For a single unconstrained facial
image, we use any off-the-shelf macroscopic detail recovery method
(such as FaceScape [Zhu et al. 2023], DECA [Feng et al. 2021], and
HRN [Lei et al. 2023]) to warp the input face image into texture space,
and recover the 3D coarse model, face texture, and macroscopic
displacement map for the whole face.

Parameter Optimization. We crop a skin patch from the texture
space by uniformly random sampling, then recover pore and wrinkle
parameters for this patch. The pore parameters, including pore
distance 𝜙 and blending strength 𝛽 , are easily predicted by a pore
detector P from a skin patch 𝐼 ′:

(𝜙, 𝛽) = P(Y(𝐼 ′),H(𝐼 ′),T (𝐼 ′)), (5)

where Y(𝐼 ′) ∈ R𝐻×𝑊 is the gray-scale of the facial patch 𝐼 ′,
H(𝐼 ′) ∈ R𝐻×𝑊 is the high-pass filtered image from 𝐼 ′, and T (𝐼 ′) ∈
{0, 1}𝐻×𝑊 is the binary image thresholded from H(𝐼 ′). Details of
patch sampling are presented in the supplementary material.

For the wrinkle parameters, we leverage our neural wrinkle sim-
ulation W for gradient descent optimization, as shown in Equa-
tion 4. A core component of our neural wrinkle simulation is a GNN,
which is introduced in Section 4.3. To optimize the parameters of
microstructure W′ in the skin patch 𝐼 ′, we define the objective
function as:

L(W(𝑥),W′) ≜ 𝜆𝑑L𝐷𝐷𝑆 (W(𝑥), 𝐼 ′) + 𝜆𝑣L𝑉 𝐼𝑆 (W(𝑥), 𝐼 ′), (6)

where L𝐷𝐷𝑆 is the direction distribution similarity, and L𝑉 𝐼𝑆 is
visual similarity. Details of these losses will be presented in Sec. 4.4
and Sec. 5.

Microstructure Synthesis. We obtain several discrete parameter
points scattered across the texture space after optimization. To
form the spatially-varying parameters map, we use the radial basis
function interpolation in the texture space. Finally, we leverage a
simplified version ofWeiss23’s forward model to synthesize the final
displacement map using our recovered spatially-varying parameter
maps.

4.3 Neural Wrinkle Simulation
Our goal is to find a differentiable solution that obtains the proper
wrinkle depth based on given wrinkle parameters. An important
characteristic of wrinkles is that adjacent wrinkles will affect the
depth of each other. Previous work of Weiss et al. [2023] simulates
the depth of wrinkles by probability-based iteration, which is an
efficient way to consider the influence of neighboring wrinkles.
However, it is difficult to establish a direct relationship between
wrinkle parameters and wrinkle depth, which makes this method
non-differentiable. Our key insight comes from the compatibility be-
tween graph neural networks and graph-based microstructure mod-
els. Specifically, given a graph structure of wrinkles and pores, the
complex interactions between wrinkles can be simulated through
multiple graph convolutions in the differentiable graph neural net-
work. The design of our GNN-based neural wrinkle simulation is
shown in Figure 3.

Graph-based Microstructure Model. Similar to Weiss et al. [2023],
we represent the pattern of wrinkles and pores with a graph 𝐺 =

(𝑉 , 𝐸), where a pore corresponds to a node, and a wrinkle corre-
sponds to an edge. Each node or edge is assigned a depth value.
The predicted pore distance 𝜙 (see Figure 4 a) provides the average
distance between nodes, and each node is then connected to its six
nearest neighboring nodes to form a basic graph structure𝐺𝜙 (see
Figure 4 b).
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Fig. 3. The illustration of neural wrinkle simulation. We present the overall structure of our neural wrinkle simulation (left) and the details of GNN-based
wrinkle iteration (right).
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c e

d f

Fig. 4. The illustration of our graph-based microstructure model. We sam-
pled the positions of pores based on pore distance (a) and connected them
to graph (b). The iteration depth of wrinkles is shown from (c) to (f). Results
are from our neural wrinkle simulation after the number of 0, 3, 5, and 7
iterations, respectively.

With the graph representation 𝐺𝜙 , we construct its dual graph
𝐺
𝜙
𝑤 , where wrinkles are represented as nodes. It indicates that if

two wrinkles in graph 𝐺𝜙 share the same pore, their related nodes
in 𝐺

𝜙
𝑤 are considered connected. This way, we can provide the

GNN with 𝐺𝜙
𝑤 , and perform wrinkle simulation by multiple graph

convolutions.

Structure of Neural Wrinkle Simulation. Building upon the two
key graph structures𝐺𝜙 and𝐺𝜙

𝑤 , we propose a neural wrinkle sim-
ulation component designed to simulate facial microstructure based
on semantic parameters. As shown in Figure 3 (left), it consists of
two parts: GNN-based wrinkle iteration and Differentiable Render-
ing. Specifically, GNN-based wrinkle iteration uses 𝐺𝜙

𝑤 to obtain
the depth of each wrinkle based on the given parameters. Differen-
tiable Rendering transforms 𝐺𝜙 into a microstructure base mesh

and renders the wrinkles and pores in the UV space to simulate the
microstructure (i.e., a displacement map).

GNN-based Wrinkle Iteration. Considering that the depth of adja-
cent wrinkles will affect each other, the wrinkle depth is computed
iteratively through GNN (Figure 4 c-f). The specific iteration is
shown in Figure 3 (right). At the beginning, we assign the template
latent vector E(0)𝑤 onto each node in 𝐺

𝜙
𝑤 , representing the depth

of the wrinkle in a higher dimension. Considering the different
characteristics of the parameters, we pre-encode the parameter 𝑥 ,
as well as wrinkle direction 𝑤𝜃 and wrinkle length 𝑤𝑙 from 𝐺𝜙 ,
into four different latent vectors: global latent E𝑔 , interaction latent
E𝑖 , distance latent E𝑑 , and strength latent E𝑠 . At 𝑡𝑡ℎ iteration, the
updating rule from E(𝑡−1)𝑤 to E(𝑡 )𝑤 is:

E(𝑡 )𝑤 = E(𝑡−1)𝑤 + G(E′𝑔 + E′𝑖 + E′
𝑑
+ E′𝑠 ;𝐺

𝜙
𝑤), (7)

E′
𝑘
= Θ𝑘 (E𝑘 · E(𝑡 )𝑤 ), 𝑘 ∈ {𝑔, 𝑖, 𝑑, 𝑠}, (8)

where the G(·;𝐺𝜙
𝑤) is the GAT convolution [Velickovic et al. 2017]

based on the wrinkle graph 𝐺𝜙
𝑤 and Θ𝑘 is a linear transformation

for each latent of E𝑔 , E𝑖 , E𝑑 and E𝑠 . After 𝑇 iterations, we obtain
the final wrinkle-varying 𝐸 (𝑇 )

𝑤 , and then decode this wrinkle latent
into the depth of wrinkle:

𝐷𝑤 = Φ𝑤 (E(𝑇 )
𝑤 ), (9)

where the decoder Φ𝑤 is a 4-layer MLP and 𝐷𝑤 is the list of wrinkle
depth. In practice, we set 𝑇 = 7. We obtain the list of pore depth
𝐷𝑝 following the Equation 3, and the final displacement map of
microstructure 𝐼𝑥 can be obtained by:

𝐼𝑥 = F (𝐷𝑤 , 𝐷𝑝 ;𝐺𝜙 ), (10)

where F is the differentiable rendering.

4.4 Direction Distribution Similarity
Skin patches from the unconstrained image are missing a certain
degree of detail, leading to a blurry appearance. Thus, rather than
accurately matching, we aim to recover the wrinkle parameters that
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𝐷𝜃(𝐼)

𝐷𝜃(𝐼′)

𝒥(𝐷𝜃(𝐼)||𝐷𝜃(𝐼′))
Simulated Microstructure 𝐼

Real skin patch 𝐼′

Gabor filters

Gabor filters

To gray

High-pass

filtering

High-pass

filtering

Direction Distribution

Direction Distribution

Fig. 5. Illustration of the direction distribution similarity. Given two patches,
we first extract the high-pass filtered images from their grayscale images,
then compute the Direction Distribution using several Gabor filters. Finally,
we measure the similarity using Jensen-Shannon Divergence.

can synthesize a microstructure with the highest similarity to the
target facial patch. We observe that the directional features of micro-
wrinkles are the most important factor affecting the appearance
of skin. However, common objective functions fail to capture such
features and are prone to getting stuck in local minima during opti-
mization. To overcome this, we propose a novel objective function,
named Direction Distribution Similarity. Specifically, the intensity
𝑝 (𝐼 ;𝜃 ) of a given direction 𝜃 on a micro-wrinkle patch 𝐼 is:

𝑝 (𝐼 ;𝜃 ) = Var(𝑓 (𝜃 ) ⊗ 𝐼 ), (11)

where 𝑓 (𝜃 ) is the Gabor filter oriented to 𝜃 and the ⊗ is an image
convolution operation. The variance of the filtered image indicates
the strength of the image at direction 𝜃 . To make the directional
feature obvious, we convert the patch into grayscale and then apply
high-pass filtering to it before passing it to the Gabor filters. The
direction intensities across the definition domain of [0, 𝜋) form the
direction distribution D𝜃 (𝐼 ), which is normalized:∫ 𝜋

0
𝑝 (𝐼 ;𝜃 )d𝜃 = 1. (12)

To match up the directional features, the similarity between the
simulated microstructure patch 𝐼 to a given skin patch 𝐼 ′ can be
measured by:

L𝐷𝐷𝑆 (𝐼 , 𝐼 ′) ≜ J (D𝜃 (𝐼 ) | |D𝜃 (𝐼 ′)), (13)

where J (D𝜃 (𝐼 ) | |D𝜃 (𝐼 ′)) is the Jensen-Shannon divergence be-
tween two different distributions D𝜃 (𝐼 ) and D𝜃 (𝐼 ′).

5 IMPLEMENTATION DETAILS
Dataset. We synthesize two different datasets for training the

pore detector net and the neural wrinkle simulation net, respectively.
Pore detector net is trained on 50k synthesized skin patches with
the size of 2562, in which micro-wrinkles and tiny pores can be
seen. The neural micro-wrinkle simulation net is trained on 50k
micro-wrinkle displacement maps with the size of 2562, consisting

of 20 different graph structures. The details of constructing those
datasets are presented in the supplementary materials.

Training. The loss function of pore detector training is the MSE
between the ground truth and predicted parameters. The loss func-
tion of neural wrinkle simulation network training consists of three
terms with equivalent weights: the MSE between predicted wrinkle
depth array and ground-truth depth array, image MSE, and LPIPS
[Zhang et al. 2018] between drawn wrinkle patch and ground-truth
wrinkle patch. The networks are implemented in the PyTorch frame-
work. We use Adam [Kingma and Ba 2014] as our optimizer with
a learning rate of 1𝑒 − 4 in our training. Both the pore detector
and neural wrinkle simulation were trained with 10 epochs on each
dataset, which took 5 hours and 18 hours on a single NVIDIA RTX
3090 GPU, respectively.

Optimization. We adopt the style loss proposed by Huang and
Belongie [2017] as our visual similarity L𝑉 𝐼𝑆 , which computes
the MSE of the mean and var of the feature of some VGG layers.
We select 𝜆𝑑 = 10 and 𝜆𝑣 = 0.001 as the corresponding weights,
respectively, and the optimization takes 75 iterations on a single
NVIDIA RTX 3090 GPU.

6 RESULTS
In this section, we demonstrate the results of our method by synthe-
sizing microstructure displacement maps from single-view uncon-
strained facial images. Apart from our method FLEX, we additionally
set up two other microstructure representation methods that are:

• Uniform: with pore distance recovered by our method and
fixed parameters of wrinkles.

• Noise: generated by a noise model from von der Pahlen et al.
[2014], which is commonly used in real-time face rendering.

The unconstrained images are from Pexels [Pexels 2025] and the
open source repository of Zhu et al. [2023], in which the facial
microstructures are visible and no cover is on the face.

6.1 Qualitative Evaluation
Compare with image patches. We integrate FLEX with FaceScape

[Yang et al. 2020] and synthesize the microstructure displacement
map from several unconstrained facial images, as shown in Figure
6. The results show the synthesized microstructure compared with
the same view of the zoomed-in input image patch. The synthesized
pores of our method have a similar density to the input, and the
appearance of the synthesized wrinkles is also close to the input.
We integrate FLEX with different existing macroscopic facial detail
recovery methods, including FaceScape [Zhu et al. 2023], DECA
[Feng et al. 2021], and HRN [Lei et al. 2023] to demonstrate our
compatibility, as shown in Figure 7. Considering rendering with
texture, we show our rendering result under a point light in Figure
1. We also show the comparison of rendering results with textures
under different environment lighting in Figure 8, it is easy to see
that our method greatly improved the realism of the face.

Compare with ground truth texture. To further validate the quality
of our synthesized result, we compare our synthesized microstruc-
ture with the ground truth skin texture from Alexander et al. [2009],
as shown in Figure 9. We replace the texture extracted from the
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Table 2. A/B comparison results of the user study. Each cell indicates the
number of times the method at the left beats the method at the top. We
present the total number of wins and the page rank measurement on the
right, with the optimal value highlighted with underline.

Winner Loser Total ↑ PageRank ↓
FLEX Uniform Noise

FLEX 0 216 246 462 0.2304
Uniform 162 0 162 324 0.2472
Noise 90 48 0 138 0.5224

Table 3. The quantitative evaluation result on the synthesized skin patch
dataset. We show the average of LPIPS on the microstructure appearance
and MSE on the optimized parameter, of five types of results under different
optimization/synthesis strategies.

Uniform Noise DDS Only VIS Only Ours
LPIPS ↓ 0.3984 0.6864 0.3073 0.4282 0.3019
MSE ↓ - - 0.0919 0.2603 0.0933

facial image with the ground truth skin texture to synthesize the
final facial microstructure displacement map. To better compare
the similarity, we rendered the skin texture in the texture space
with either our synthesized microstructure displacement (top) or
the ground truth displacement (bottom). Results show that our syn-
thesized microstructure has a realistic spatially-varying appearance
compared with ground truth skin texture.

6.2 Quantitative Evaluation
We conduct a quantitative evaluation of the microstructure patches
synthesized from the skin patches in our synthesized skin patch
dataset. We randomly select 1000 skin patches from the validation
set as the optimization targets. Since we need to measure the vi-
sual similarity, we choose LPIPS to measure the similarity between
the synthesized microstructure displacement and the ground-truth
displacement map that was used to synthesize the skin patch. We
establish multiple comparative approaches, including DDS Only
(only DDS in objective function), VIS Only (only VIS in objective
function), Uniform, and Noise. Apart from visual similarity, we
also compare the parameter similarity via MSE between optimized
parameters and ground-truth, as shown in Table 3. Results show
that our method has the highest visual similarity on the synthesized
microstructure, and the second highest parameter similarity on the
optimized parameters, slightly lower than DDS Only.

6.3 User Study for Quantitative Evaluation
We conducted a user study to evaluate further whether FLEX en-
hances the visual similarity of reconstructed facial geometry com-
pared to the methods mentioned at the beginning of Section 6.

Study Design. Our evaluation includes 42 participants. Each par-
ticipant evaluated at least 22 groups of face patches, with each group
showing a pair of patches by using two random methods. These
two patches correspond to one facial region of a random individual.
Participants were asked to do an A/B comparison to choose either
the more visually realistic of the two patches.

Comparison Result. Table 2 shows the A/B comparison results. We
also applied the PageRank algorithm [Page et al. 1999], following
Pang and Ling [2013] and Weiss et al. [2024], to further analyze the
comparison results. The evaluation results indicate that FLEX has
the highest scores, followed by Uniform.

6.4 Performance
In all tests, for a single facial patch, our parameter recovery can be
completed in an average of 2.35 seconds. In contrast, the parameter
optimization method of Weiss et al. [2023] costs more than 140
seconds. Thanks to our differentiable microstructure simulation, we
achieve a significant efficiency improvement compared to Weiss
et al. [2023].

6.5 Ablation Study
In our ablation study, we aim to demonstrate the indispensability
of both Direction Distribution Similarity (DDS) and Visual Similarity
(VIS) during the optimization. The optimization results, as illustrated
in Figure 10, we find that our proposed method, which combines
DDS with VIS, achieves superior results. It not only keeps the direc-
tional features consistent with the input patches but also reproduces
a visually similar micro-wrinkle appearance. In contrast, using DDS
only may cause an unstable strength of wrinkle depth, while using
VIS only will cause the directional features to be lost, leading to a
problematic appearance.

6.6 Discussion and Limitations
Our method inevitably has several limitations. First, we assume
facial microstructure comprises only concave features (e.g., micro-
wrinkles and pores). However, certain facial regions (e.g., the nasal
tip) exhibit convex structures caused by sebaceous filaments or
fat deposits, which fall outside our model’s representational scope
and thus cannot be synthesized. Second, our method optimizes
microstructure parameters based on visible facial textures in the
input image. However, since the perceivedmicrostructures are inher-
ently affected by lighting conditions and viewing angles, we cannot
guarantee microstructure consistency across varying illumination
scenarios.

7 ETHIC CONCERN
While our work advances facial microscopic details synthesis from
a single unconstrained facial image, we explicitly acknowledge its
potential misuse implications. The proposed method’s ability to
synthesize high-fidelity microscopic facial microstructure could
theoretically be exploited to create forgeries, particularly when
combined with existing macroscopic facial synthesis techniques.

8 CONCLUSION
In this paper, we present FLEX, a framework for synthesizing fa-
cial microstructures, including micro wrinkles and tiny pores, from
a single unconstrained facial image. Our key insight is the strong
prior provided by the specialized pattern of the relationship between
wrinkles and pores, which makes it possible to synthesize realistic
facial microstructure from challenging inputs. Specifically, we pro-
pose a GNN-based differentiable parametric microstructure model,
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using multiple graph convolutions to simulate the complex interac-
tions between adjacent wrinkles. We treat the parameter recovery
process as an optimization problem and propose Direction Distri-
bution Similarity to resolve the inconsistency between the blurry
input and the simulated microstructure, ensuring consistent direc-
tional features. Thanks to the differentiability, our optimization is
approximately 60 times faster than previous methods. Experimental
results demonstrate that the microstructures synthesized by FLEX
seamlessly integrate with existing macroscopic geometry recovery
methods, significantly enhancing the visual realism of the recon-
structed faces. Promising future work includes considering dynamic
expressions and a more comprehensive microstructure model.
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Fig. 6. The illustration of integrating FLEX with FaceScape [Zhu et al. 2023]. For each face, we show the whole face as well as two zoomed-in images from
both the input facial image and our rendering results.
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Fig. 7. The results of integrating with different macroscopic methods. We compare the same zoomed-in region across different integration setups. The tested
facial images are all from Pexels [Pexels 2025].
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Fig. 8. Comparison of rendering results. We obtain the macroscopic details and microscopic details from FaceScape [Zhu et al. 2023] and our method,
respectively, and then render them under environmental light. We select two zoomed-in rendered results for each individual. The tested facial images are from
the open source repository of Zhu et al. [2023].
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Fig. 9. The comparison of the synthesizing result from ground truth texture from Alexander et al. [2009]. We show the zoomed-in crops from several face
regions.
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Fig. 10. The optimization result of different objective function setups. The highlighted results reveal the limitation of direction mismatch when using VIS only,
and unstable depth when using DDS only.
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